

Time allowed : 3 Hrs

Max. Marks: 50

Note : Attempt any five question in all. Select at least one from each unit. Each question carry equal marks

<u>UNIT-I</u>

- 1. (a) Test the convergence of the following series :- $\frac{x}{1} + \frac{1}{2}\frac{x^2}{3} + \frac{1.3}{2.4}\frac{x^3}{5} + \frac{1.3.5}{2.4.6}\frac{x^4}{7} + \cdots$
 - (b) Examine the convergence of the following series :-

(i.)
$$\frac{1}{2} + \frac{\sqrt{2}}{5} + \frac{\sqrt{3}}{8} + \dots + \frac{\sqrt{n}}{3n-1} + \dots$$

(ii.) $x + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \frac{4^4 x^4}{4!}$

or

2. (a) Test the convergence and absolute convergence of the following series.

$$1 - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots + (-1)^{n-1} \frac{1}{n^p} + \dots$$

(b) Expand $\sin x$ in Maclaurin's series.

<u>UNIT-II</u>

3. (a) If $\frac{2a}{r} = 1 + \cos \theta$, then with usual notations show that $\frac{ds}{d\Psi} = \frac{2a}{\sin^3\psi}$

(b) Show that in the parabola $y^2 = 4ax$ the radius of curvature at any point P is $\frac{2 (SP)^{3/2}}{\sqrt{a}}$ where S is the focus of the parabola.

4. (a) IF x^x , $y^y z^z = C$ then prove that x = y = z

$$\frac{cz}{\partial x dy} = \frac{-1}{x \log e^x}$$
(b) If $u = tan^{-1} \frac{x^3 + y^3}{x + y}$, then show that
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \sin 2u \ (1 - 4\sin^2 u)$$

UNIT-III

- 5. (a) Prove that the envelope of the family of parabolas $\sqrt{x/a} + \sqrt{y/b} = 1$ is an astrold when $ab = c^2$ C being constant
 - (b) Find the maximum and minimum value of function $u = \sin x$, $\sin y$, $\sin(x + y)$

or

- 6. (a) Find the asymptotes of following curve y³ - xy² - x²y + x³ + x² - y² - 1 = 0
 (b) Trace the following curve
 - (b) Trace the following curve $y^2(a^2 + x^2) = x^2(a^2 - x^2)$

UNIT-IV

- 7. (a) Find the whole length of the cycloid $x = a \cos^3 t$, $y = b \sin^3 t$. Hence find the whole length of the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$
 - (b) Find the area of a loop of the curve $r = a \sin 3\theta$

or

- 8. (a) Find the area common to the following curves $y^2 = ax$ and $x^2 + y^2 = 4ax$
 - (b) Find the volume of the spindle shaped solid generated by resolving the following astroid about $x axy \ x = a \cos^3 t$, $y = a \sin^3 t$

UNIT-V

 9. (a) Change the order of integration of the following integral
 ∫₀^{2a} ∫_{√2ax}^{√2ax}/_{√2ax-x²} V dx dy
 (b) Integrate r sin θ over the area of the cardioids r = a (1 + cosθ) about the initial line.

or

- 10. (a) Evaluate the following integral by changing the order of integration $\int_0^\infty \int_0^\infty \frac{e^{-y}}{y} dx dy$
 - (b) Evaluate $\iint \int \int xyz \, dx \, dy \, dz$ where the region of integration is the complete ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$$

Time allowed : 3 Hrs

Max. Marks: 50

Note : Attempt any five question in all. Select atleast one from each unit. Each question carry equal marks

<u>UNIT-I</u>

- 1. (a) Test the convergence of the following series :- $\frac{1}{1+x} + \frac{x}{1+x^2} + \frac{x^2}{1+x^3} + \cdots \dots$
 - (b) Prove that the following of hyper harmonic series is
 - (i) Convergent if p > 1
 - (ii) Divergent if $p \le 1$ $\Sigma \frac{1}{n^p} = \frac{1}{2^p} + \dots \frac{1}{n^p} + \dots$
- 2. (a) Discuss the convergence and absolute convergence of the following series $\frac{1}{a} - \frac{1}{a+x} + \frac{1}{a+2x} - \frac{1}{a+3x} + - - - - - - x > 0$
 - (b) Expand log (1 + x) in Maclaurim series.

<u>UNIT-II</u>

- 3. (a) Find the pedal equation of an ellipse $\frac{l}{r} = 1 + e \cos\theta$; (e < 1)
 - (b) Prove that the radius of curvature at any point (x, y) on the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$ is there time the length of perpendicular from the origin on the tangent at that point.
- 4. (a) If V = F(x y, y z, z x) then prove that

$$\frac{\partial V}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial V}{\partial z} = 0$$

(b) Transform $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in polar coordinates

<u>UNIT-III</u>

- 5. (a) Show that the envelope of the straigh line joining the extremities of a pair of semi conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2}$
 - (b) In a triangle, find a point from which the sum of square of a distance of the vertices is minimum.

Or

6. (a) Show that eight points of intersection of following curve and its asympolotes lie on a rectangular hyper data. $x^4 - 5x^2y^2 + 4y^4 + x^2 - y^2 + x + y + 1 = 0$

(b) Trace the cissoids
$$y^2(2a - x) = x^3$$

UNIT-IV

- 7. (a) Find the perimeter of cardioids $r = a(1 + \cos \theta)$. Also show that upper half arc of the cardioids $r = a(1 + \cos \theta)$ is bisected by the line $\theta = \frac{\pi}{3}$
 - (b) Find the common area to the circles $r = a\sqrt{2}$ and $r = 2a \cos \theta$.

Or

- 8. (a) Prove that the length of the arc from the vertex to any point on the cycloid $x = a (\theta + sin\theta), y = a(1 \cos \theta)$ is $\sqrt{8ay}$. Also prove that the whole length of an arc of curve 8a.
 - (b) Find the volume of the solid generated by resolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about x axy

<u>UNIT-V</u>

- 9. (a) Evaluate the following integral by changing to polar coordinates $\int_0^t \int_x^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dx dy$
 - (b) Evaluate $\iint (x + y)^2 dx dy$ where R is the region of integration given below $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$
- 10. (a) If the region A of the integration is the triangle given by y = 0, y = x, x = 1 then show that $\iint_A \sqrt{4x^2 y^2} dx dy = \frac{1}{3} \left[\frac{\pi}{3} + \frac{\sqrt{3}}{2} \right]$
 - (b) Find the value $\int \int \int_{v} x^{2} dx dy dz$ where area V is bounded from the following surface x = 0, z = 0 and x + y + z = a, a > 0