Time allowed : 3 Hrs
Max. Marks : 50
Note : Attempt any five question in all. Select at least one from each unit. Each question carry equal marks

UNIT-I

1. (a) Test the convergence of the following series:-

$$
\frac{x}{1}+\frac{1}{2} \frac{x^{2}}{3}+\frac{1.3}{2.4} \frac{x^{3}}{5}+\frac{1.3 .5}{2.4 .6} \frac{x^{4}}{7}+\cdots \ldots
$$

(b) Examine the convergence of the following series :-
(i.) $\frac{1}{2}+\frac{\sqrt{2}}{5}+\frac{\sqrt{3}}{8}+\cdots+\frac{\sqrt{n}}{3 n-1}+\cdots$
(ii.) $x+\frac{2^{2} x^{2}}{2!}+\frac{3^{3} x^{3}}{3!}+\frac{4^{4} x^{4}}{4!}$
2. (a) Test the convergence and absolute convergence of the following series.

$$
1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots+(-1)^{n-1} \frac{1}{n^{p}}+\cdots . .
$$

(b) Expand $\sin x$ in Maclaurin's series.

UNIT-II

3. (a) If $\frac{2 a}{r}=1+\cos \theta$, then with usual notations show that $\frac{d s}{d \Psi}=\frac{2 a}{\sin ^{3} \psi}$
(b) Show that in the parabola $y^{2}=4 a x$ the radius of curvature at any point P is $\frac{2(S P)^{3 / 2}}{\sqrt{a}}$ where S is the focus of the parabola.
or
4. (a) IF $x^{x}, y^{y} z^{z}=C$ then prove that $x=y=z$

$$
\frac{c z}{\partial x d y}=\frac{-1}{x \log e^{x}}
$$

(b) If $u=\tan ^{-1} \frac{x^{3}+y^{3}}{x+y}$, then show that

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\sin 2 u\left(1-4 \sin ^{2} \mathbf{u}\right)
$$

UNIT-III

5. (a) Prove that the envelope of the family of parabolas $\sqrt{x / a}+\sqrt{y / b}=1$ is an astrold when $a b=c^{2} \mathrm{C}$ being constant
(b) Find the maximum and minimum value of function $u=\sin x, \sin y, \sin (x+y)$
or
6. (a) Find the asymptotes of following curve
$y^{3}-x y^{2}-x^{2} y+x^{3}+x^{2}-y^{2}-1=0$
(b) Trace the following curve
$y^{2}\left(a^{2}+x^{2}\right)=x^{2}\left(a^{2}-x^{2}\right)$

UNIT-IV

7. (a) Find the whole length of the cycloid $x=a \cos ^{3} t, y=b \sin ^{3} t$. Hence find the whole length of the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
(b) Find the area of a loop of the curve
$r=a \sin 3 \theta$
or
8. (a) Find the area common to the following curves $y^{2}=a x$ and $x^{2}+y^{2}=4 a x$
(b) Find the volume of the spindle shaped solid generated by resolving the following astroid about $x-a x y \quad x=a \cos ^{3} t, y=a \sin ^{3} t$

UNIT-V

9. (a) Change the order of integration of the following integral
$\int_{0}^{2 a} \int_{\sqrt{2 a x-x^{2}}}^{\sqrt{2 a x}} V d x d y$
(b) Integrate $r \sin \theta$ over the area of the cardioids $r=a(1+\cos \theta)$ about the initial line.
or
10. (a) Evaluate the following integral by changing the order of integration
$\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} d x d y$
(b) Evaluate $\iiint x y z d x d y d z$ where the region of integration is the complete ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1$

Time allowed : 3 Hrs
Max. Marks : 50
Note : Attempt any five question in all. Select atleast one from each unit. Each question carry equal marks

UNIT-I

1. (a) Test the convergence of the following series :-
$\frac{1}{1+x}+\frac{x}{1+x^{2}}+\frac{x^{2}}{1+x^{3}}+\cdots \ldots$
(b) Prove that the following of hyper harmonic series is
(i) Convergent if $p>1$
(ii) Divergent if $p \leq 1$

$$
\Sigma \frac{1}{n^{p}}=\frac{1}{2^{p}}+\ldots \cdot \frac{1}{n^{p}}+\ldots
$$

2. (a) Discuss the convergence and absolute convergence of the following series
$\frac{1}{a}-\frac{1}{a+x}+\frac{1}{a+2 x}-\frac{1}{a+3 x}+-------x>0$
(b) Expand $\log (1+x)$ in Maclaurim series.

UNIT-II

3. (a) Find the pedal equation of an ellipse $\frac{l}{r}=1+e \cos \theta ;(e<1)$
(b) Prove that the radius of curvature at any point (x, y) on the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is there time the length of perpendicular from the origin on the tangent at that point.
4. (a) If $V=F(x-y, y-z, z-x)$ then prove that

$$
\frac{\partial V}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial V}{\partial z}=0
$$

(b) Transform $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ in polar coordinates

UNIT-III

5. (a) Show that the envelope of the straigh line joining the extremities of a pair of semi conjugate diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{2}$
(b) In a triangle, find a point from which the sum of square of a distance of the vertices is minimum.

Or
6. (a) Show that eight points of intersection of following curve and its asympolotes lie on a rectangular hyper data.

$$
x^{4}-5 x^{2} y^{2}+4 y^{4}+x^{2}-y^{2}+x+y+1=0
$$

(b) Trace the cissoids $y^{2}(2 a-x)=x^{3}$

UNIT-IV

7. (a) Find the perimeter of cardioids $r=a(1+\cos \theta)$. Also show that upper half arc of the cardioids $r=a(1+\cos \theta)$ is bisected by the line $\theta=\pi / 3$
(b) Find the common area to the circles $r=a \sqrt{2}$ and $r=2 a \cos \theta$.

Or
8. (a) Prove that the length of the arc from the vertex to any point on the cycloid $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ is $\sqrt{8 a y}$. Also prove that the whole length of an arc of curve 8 a .
(b) Find the volume of the solid generated by resolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about $x-a x y$

UNIT-V

9. (a) Evaluate the following integral by changing to polar coordinates $\int_{0}^{1} \int_{x}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}}+y^{2} d x d y$
(b) Evaluate $\iint(x+y)^{2} d x d y$ where R is the region of integration given below $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=1$
10. (a) If the region A of the integration is the triangle given by $y=0, y=x, x=1$ then show that $\iint_{A} \sqrt{4 x^{2}-y^{2}} d x-d y=\frac{1}{3}[\pi / 3+\sqrt{3} / 2]$
(b) Find the value $\iiint_{v} x^{2} d x d y d z$ where area V is bounded from the following surface $x=0, z=0$ and $x+y+z=a, a>0$
